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The friction cost is specifically measured. The model should improve 
many practices in housing market research, and may be extended to 
other durable goods markets and beyond. 

 

 

 
Keywords 

 

Housing Market, Structural Model, Equilibrium, Uncleared Stock, Friction 

 

mailto:hua@ntu.edu.com


2    Hua 

 

 

1. Introduction 

 
Houses are heterogeneous, durable, and generally indivisible goods that provide 

services for consumption by the occupying households. Their dispersed owners 

may act as both house sellers and buyers when they move for the sake of 

consumption adjustment. The total sales of used houses are of such a magnitude 

that they play a major role in the housing supply and reduce the relevance of 

the firm theory in micro- economics. Both selling and buying require a 

considerable amount of time. These unusual features are well known and have 

invited diverse approaches to model the housing market. The issues that need 

to be addressed are many---and seem so interrelated that makes extricating them 

rather difficult. 

 

To illustrate, there is always a significant volume of houses as the stock on 

market (SOM) for sale, even when the market is apparently in equilibrium. 

This SOM, which violates the central tenet of neoclassic economics that a 

market in equilibrium is cleared, leads to a delayed time on market (TOM) for 

selling houses at an aggregate rate of transaction (ROT). The literature is very 

rich in separately explaining the housing price change with one of these three 

variables as the exogenous source1. But can we treat them as endogenous 

variables and related causally to each other and to price? 

 

More significantly, the transaction price paid by a house buyer is in fact worth 

less to the seller after the loss as the TOM is deducted. If this loss is a function 

of price alone or can be separately included in the exogenous transaction cost, 

it should be absorbed into the supply function of the seller. Holding this 

assumption may explain the neglect of the issue in the past. However, what 

would happen if the TOM is treated as an endogenous variable? The reduced 

price valued by sellers due to the TOM is referred to as the effective price, or 

the seller’s price, which is differentiated from the transaction price, or the 

buyer’s price. Then, are there not two prices at work together to equate supply 

with demand? 

 

In addition, since households purchase houses as durable goods in order to 

provide housing services for their own consumption, how, then, are the goods 

market and service equilibrium related? And how should vacant houses, which 

serve no one, be treated in the service equilibrium? 

                                                                 
1 In the literature, housing vacancies are usually used to represent the SOM. The TOM 

is often referred to as vacancy duration or waiting time, and the ROT as transaction 

volume, turnover, matches, or the supply-demand flows when the market is in 

equilibrium. Linking the housing price adjustment to the SOM in terms of vacancies is 

a major theme in housing market research-- see footnote 7. For research on the role of 

the TOM in the market, see Haurin (1988), Yavas and Yang (1995), and Ong and Koh 

(2000); for research on the role of the ROT, see Stein (1995), Follain and Velz (1995), 

Hort (2000), and Caplin and Leahy (2011). 
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In order to address these issues in a unifying and coherent way, this paper 

proposes a new structural model based on a different set of constructs about the 

market. The intention is to form a theoretical framework that may provide 

fruitful and better applications. The model is composed of two related 

equilibriums: one of housing service aggregated from all residential households 

and the other of houses as goods that are being bought and sold. There are two 

prices in each equilibrium: one for the demand and the other for the supply. 

Numerous buyers and sellers enter and exit the market without restriction, all 

being price-takers. Yet in this competitive market, transaction friction arises 

from the stochastic process of house trading. 

 

Transaction friction has been regarded as inevitable in many markets and 

treated in diverse ways, which still beg for a clear definition with consensus 

together with an unambiguous measurement2. In housing analyses, friction in 

the labor market has been often referred to as an analogy. In this paper, 

transaction friction is represented by the average of the TOM and the cost of 

friction is measured by the difference between the demand and supply prices. 

This is conceptually clear and simple in measurement.  

 

The proposed model differs from all existing models with the foregoing 

characteristics. To repeat: the former covers both the goods and service markets, 

deals with them at both the individual and aggregate levels, treats the SOM, 

TOM, and ROT as endogenous variables related to price, etc. The model 

positions itself in a different category of housing structure.  

 

In Section 2, the model is presented in four parts. The first part is the setup for 

the modeling with a series of definitions; the second develops two market 

equilibriums with nine equations; the third tackles equilibrium solutions; and 

the empirical estimation of the model is addressed in the fourth part. In Section 

3, the contributions of the model in terms of practical applications are 

demonstrated. Many possible extensions from the model are outlined in Section 

4. The modeling is recaptured and conclusions are made in Section 5. 

 

 

                                                                 
2 Petrongolo and Pissarides (2001) provide a brief history on the notion of friction in 

the labor market in the context of their review of “the black box of matching function”. 

They trace the notion to Hicks, Pigou, Keynes, and its popularization in the 1970s 

without yielding an explicit definition associated with measurement. The early notion of 

friction somehow refers to voluntary, or “normal” unemployment that slows down wage 

adjustment. Ridder and van den Berg (2003), however, in their cross-country 

comparison of labor market frictions, define search friction in terms of the number of 

jobs offered during a spell of employment, which can be independent from wage data. 

Stoll (2000) reviews friction in the financial market and introduces two measurements: 

one by the time needed to trade an asset and the other by the price concession needed 

for an immediate transaction. He proposes to use the spread between bid and ask prices 

as the measurement of friction, and this is similar to the difference between the two 

prices adopted in this paper. 
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2. The Model 
2.1 The Preliminaries 

 

A durable good is a physical item that provides a flow of services to satisfy the 

user’s wants. The quantitative relationship between a house as a durable good 

and its service flow can be simplified by properly defining their units. A house 

in this paper is treated, as adopted from Muth (1960) and Olsen (1969), like a 

physical good packed with a certain fixed volume of housing stocks, each unit 

of which provides one unit of housing service per time period. Due to 

differences in location, physical conditions, or style, houses of the same size 

(square footage) may contain different amounts of housing stocks. On the other 

hand, houses of different sizes or characteristics may contain the same volume 

of housing stock. The heterogeneity of houses is converted into homogenous 

housing service provided by a standardized housing stock. 

 

For a community or an SOM, the total number of houses is referred to as the 

stock of houses. Notice the difference between the stock of houses and the 

housing stock defined above.  

 

A household’s demand for housing service consumption is met by its owner- -

the occupier’s supply that is generated from the fixed amount of his/her housing 

stock. The household obtains the maximum utility from an optimum mix of 

consumption, including that of housing service, chosen according to its 

preference, income and the prevailing market prices of all goods and services. 

Deviation from this desired mix causes disequilibrium, but this is a common 

occurrence and usually increases with time. After the disequilibrium reaches a 

threshold, it motivates a household to move and change houses in order to 

regain an optimum mix of consumption with housing service provided by a new 

volume of housing stock. 

 

The unit price of the housing stock is not differentiated from the unit price 

(rental) of the housing service,3 both of which are referred to as the housing 

(unit) price, denoted by p. A house k has a market price Pk as the product of the 

housing stock contained in the house, denoted by hk., and the housing price p 

(Pk = hk p). Due to the TOM, this price Pk is discounted, see Equation (9) later, 

to become the effective house price Πk of the seller, which is the product of the 

discounted effective price of the housing unit π and the same stock 

 .k k kh h  .  

 

                                                                 
3 The unit price of a housing stock should be the capitalized value of the unit rental of 

the housing service. The capitalization rate is a subsumed constant in our proposed 

model. A more elaborate model that distinguishes a rental from price in the housing 

market might treat the capitalization rate as a variable in order to be connected to 

financial market analysis. 
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A community dwells on a set of houses, each of which has a different housing 

stock but with the same two housing prices, p and π. Houses that are vastly 

different in location, condition, or style are considered to belong to different 

communities with different housing prices. These will be treated later as 

different submarkets in an extension of the model. 

 

The total stock of houses in a community, denoted by N, comprises two parts: 

one of occupied houses, denoted by H, each of which defines a household in 

the US census, and the other of vacant houses, denoted by V. (N = H + V). 

Houses may also be sorted as comprising another two parts: one of houses not 

for sale, denoted by U, and the other of houses as the SOM, denoted by 

( )Z N U Z  . There are vacant houses not on the market, denoted by Vo, and, 

on the other hand, there are occupied houses but listed for sale, denoted by Ho. 

Therefore, 0 0Z H V V    and 0 0U H H V   . In general, Z≠V and U≠H 

unless Vo= Ho. Note that Z, Ho, and Vo are usually unobserved.4 

 

For simplicity of analysis, let both N and H have the same average housing 

stock per house, denoted by h. This implies that V also has the same h. Thus, in 

terms of the aggregate housing stock or housing service: hN hH hV  . The 

average house price of the community is P = hp with an average effective price 

of Π = hπ. 

 

 

2.2 Two Equilibriums 

 

Although most individual owner-occupiers are not participating in the housing 

market, the aggregated housing service in a community is considered to be 

determined by the two aforementioned housing prices. Therefore, the three 

following equations represent the equilibrium: 

( )D d p                          (1) 

( )S s                           (2) 

S hV D                          (3) 

In these equations, D denotes the aggregate demand by households for housing 

services as a function d of the market price p, and S denotes the aggregate 

                                                                 
4 In certain economies, the stock of vacant houses differs significantly from the SOM. 

Taiwan is a good example, as its 2011 housing census reports that 19.4% of houses are 

vacant, without further breakdown by reason. Sporadic surveys, however, show that the 

majority of the vacant houses are not used as seasonal houses nor for sale or rent in the 

market. The extremely low property tax rate, the very high cost of evicting renters in 

case of a default, and the long-run housing price appreciation trend in Taiwan in the past 

have together combined to cause a situation in which people buy houses as investment 

assets but keep them off the market. To distinguish SOM from vacant stock is not only 

essential for market analyses in such economies, but may also further facilitate data 

analyses in advanced economies. See Section 3.2.3 



6    Hua 

 

 

supply of housing service as a function s of the effective price of the suppliers 

π. The suppliers include both house owners and developers. The owners use the 

effective price to impute rentals as the opportunity cost for providing housing 

service to their own household. The service available in the vacant houses 

serves no one, and this amount is therefore deducted from the total supply to 

equal the demand as shown in Equation (3). 

 

The three equations contain six variables. To obtain a solution, as well as solve 

for Z, an SOM sub-model for the observed market of house trading is proposed 

below.  

 

The SOM can be pictured as a pool of available houses with a total of Z. 

Regarding the pool, the outflow F represents the fall of the number of houses 

in the pool, and the inflow G represents the generation of additional houses to 

the pool. F mainly contains house purchases by households moving into the 

community, household formations in the community, and demolitions of 

existing houses. Together, they constitute the demand for houses as a function 

of the average house price P = h p. On the other hand, G mainly contains house 

sales by households leaving the community, household dissolutions in the 

community, and new constructions. Together, they form the supply of houses 

as a function of the average effective price Π= h π. The pool of SOM is in 

equilibrium when 

( )F f g                          (4) 

( )G g                           (5) 

F G                           (6) 

The task now is to postulate additional relationships that complement these 

three equations in order to determine not only F, G, P, and Π, but also the SOM 

and the TOM. The two prices solved are converted into their unit service prices 

which lead to the solution for the service sub-model of (1), (2), and (3). 

 

Return to the SOM pool of Z. Although both inflow G and outflow F can be 

viewed as constant flows, it is better to realistically treat the individual houses 

in the pool as in a stochastic process of being sold. Each house sale is 

independent from other sales, so the process is therefore considered as Poisson 

with a single parameter, λ, i.e. the hazard rate. There is a very rich body of 

studies that separately examine certain parts of the complex house transaction 

process at the individual level. These studies include the decision on moving 

and searching on the buyer’s side, the pricing strategy on the seller’s side, and 

matching, negotiating, and settling the deals between the buyers and sellers. 

Only certain key aspects of these previous studies are needed to be synthesized 

to arrive at the hazard rate function below. The derivation of the function is 

anchored to the individual behaviors and presented in the Appendix. 

( , )P Z                          (7) 

In a Poisson process, the inverse of the parameter hazard rate is in fact the 

expected time length of the subject at risk. Therefore, in this case, the 
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1/TOM  . A house is exposed to this process once it is added into the pool 

of SOM. The probability of a house remaining in the pool after a time length x 

is 
0

Pr( ) 1 exp( ) exp( )
x

x t dt x       . The number of houses that are 

added to the pool at a time length x before and have not been sold up to this 

point in time is Pr( ) exp( )G x G x  . The expected total number of houses 

in the pool at present is hence obtained by integrating this expression over x 

from this point in time through all past time: 

0
exp( ) /Z G x dx G 



                    (8) 

The SOM is therefore determined. 

 

To a representative seller who asks for a total price P hp  of the house, the 

expected worth from the sales proceeds is this price discounted by the length of 

the TOM, denoted here by w, according to a continuous subjective discount rate 

r, and becomes exp( )P rw . Here, w is a random variable with a Poisson 

distribution that is also governed by λ. Therefore, the expected worth is 

0
exp( ) exp( ) / ( )w P rw dw P r  



    .In addition to the monetary time 

cost represented by the seller’s discount rate r, the seller also bears a continuous 

carrying cost C (the sum of the opportunity rent, asset depreciation, 

maintenance and operation costs, tax, etc.) during the selling period that should 

be taken into account. This cost valued at the beginning of the sale period is 

0
exp( )

W

C rx dx . Again, w is a random variable with a Poisson distribution 

governed by λ. Therefore, the expected carrying cost is 

0 0
exp( ) exp( ) / ( )

W

w C rx dx dw C r  
  

    
   . This cost should further be 

subtracted from the aforementioned expected worth / ( )P r   . Thus, the 

seller’s expected net worth from the sale, or his/her effective house price is 

( ) / ( )P C r                         (9) 

Dividing this equation by the average housing stock h results in the unit housing 

service price: 

( ) / ( )c r                         (9a) 

In this equation, c =C/P, which represents the carrying cost rate of the house.  
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2.3 Equilibrium Solution 

2.3.1 The Two Markets 

 

The SOM sub-model now contains six equations (Equations (4) – (9)) to 

determine the six variables solved as Po, Πo, Fo, Go, Zo, and λo. (Hereafter, the 

solved equilibrium values are represented by symbols superscripted with o.) 

 

The housing service equations of (1) – (3) are then solved as follows. A 

combination of the three equations yields ( / ) ( / ) 0s h hV d P h    . Given 

a specified supply function of s(Π/ h ), a specified demand function of d(P/h), 

and V (such as the observed data of vacant stock of houses), the average stock 

ho is then determined after Πo and Po are determined in the SOM model. The 

factor ho converts the two total house prices into their unit housing prices as 

/o o op P h , /o o oh  . Then, the two unit prices respectively determine 

Do in the demand function (1) and So in the supply function (2). The total 

occupied houses and the total stock of all houses at equilibrium are then 

determined as /o o oH D h  and /o o oN S h  respectively. Lastly, the 

equilibrium vacant stock is o o oV N H  .  

 

The equilibrium in the aggregated housing service is therefore linked to the 

equilibrium of the SOM. Moreover, the model is novel in that it unveils Zo, Wo, 

and ho, which has never been attained in modeling the housing market before. 

 

 

2.3.2 Sufficient Conditions for the SOM 

 

If there were no SOM, the TOM would be nil. In such a case of a cleared market, 

there is no need for this model. The uncleared SOM emerges in accordance with 

Equation (8), as long as G≠0 and λ≠∞. Both conditions usually stand because 

there is normally a supply flow of houses into the market, and the hazard rate 

does not go to infinity since neither does its two components, ψ and δ in λ=ψδ, 

see the exposition that leads to Equation (7). Therefore, the existence of an 

uncleared SOM is not only explained as the consequence of a stochastic process, 

it is also assured. 

 

 

2.3.3 Equilibrating 

 

In equilibrium, ( ) ( )o og G f p F     and 0Z  . If there is a 

disturbance, say, on the supply side that causes G > Go, which entails ΔZ >0, it 

will start the following chain reactions. Equation (9) implies Π/ λ> 0, and 

this together with λ/ Z < 0 in Equation (7) leads to / 0Z   . However, 

/ 0G     from the supply function (5), hence / 0G Z   . It reduces G 

and counteracts the initial disturbance oG G . With this countering, the 

 

 
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equilibrating process continues until oG G , which restores 0Z  . This 

process applies to the situation where oG G  in the opposite direction, and 

also applies to the demand side when oF F  or oF F . 

 

This process may be explored to provide the basis to relate housing price 

adjustments to changes in the SOM. However, the dynamic adjustment 

mechanism should then be explicitly specified ad hoc. 

 

 

2.4 Empirical Estimation 

 

The structural model which consists of Equations (1) - (9) does not need to be 

estimated as a whole, which would be a cumbersome task. Instead, it can be 

analyzed based on three sets of equations estimated separately from time series 

data. The first set contains Equations (4), (5), (6), and (9), and can be estimated 

on the basis of the postulated f(P) and g(Π) along with the observed time series 

data F*, G*, the average house prices P*, and the average marketing time W*. 

(Hereafter, a symbol with superscript * represents observed data for the 

corresponding variable.) Exogenous variables such as household income, the 

construction cost, etc. can all be introduced to the demand and supply functions. 

The second set simply contains Equations (7) and (8), and can be estimated on 

the basis of the postulated λ(P, Z) along with the data of P* , W*, and G*.  

 

The third set addresses the market for housing services. It can be estimated on 

the basis of the postulated d(p) and s(π) and the following observed data: total 

stock of houses N*, total occupied houses H*, vacant houses V*, and average 

transaction price P*. The data are then converted into S (=hN*), D (=hH*), and 

p (=P*/ h) in the model by a factor h, the average housing stock contained in 

all houses. The unit service supply price π is computed from p in accordance 

with Equation (9a). The factor h as a converting scale factor should be treated 

as a variable in the time series data, and therefore needs another postulated 

function to explain it.5 

 

 

3. Practical Applications of Model 

 
The proposed structural model should help to clarify many conceptual issues 

and answer the questions raised in the Introduction. Through the model, we 

have come to a better understanding of the housing market, including why an 

equilibrium market is not cleared, how the friction arises from a competitive 

market, why there is a price difference between the buyer and the seller, etc. 

The main uses of the model, however, are still those of practical applications. 

                                                                 
5 Section 2.3.1. states that, in equilibrium, a supply function s and a demand function d 

together with a given V contains a solution ho. Here, it reminds us that h is needed to 

convert the data for estimating s and d in the first place. 
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They are achieved even if the model contains unspecified functions (1), (2), (4), 

(5) and (7). These applications, listed below, can all be empirically verified and 

assessed.  

 

 

3.1 Stock-Flow Equation and Unveiled SOM 

 

Equation (8) is rewritten as SOM = TOM × ROT. (Alternatively, in short, 

/R S T ) This can be directly reasoned out as a general stock-flow equation 

in equilibrium, but here, it is theoretically derived as a causal relation.6 More 

significantly, since both the ROT and the inverse of the TOM are functions of 

price, this relationship is therefore embedded in a market process. There is an 

important practical use of this equation. Although the SOM is not observed, but 

both the ROT (F* = G*) and the average of TOM (W*) are observed. Therefore, 

the SOM can be computed from these two data items in accordance with 

Equation (8). This computed SOM as the unveiled Z should be used in housing 

market research.  

 

There is a traditional research theme which suggests that housing price adjusts 

according to the level of housing vacancies or changes in them. However, the 

empirical works seem to be inconclusive.7 The model presented in this paper 

demonstrates that price and SOM, which are related to vacancies, are 

determined simultaneously, and that there is no direct causal relationship 

between the two. However, if the price adjustment is to be modeled expediently, 

it is the computed SOM rather than the observed vacancies that should be used, 

since, to repeat, vacancy data may contain houses that are not on the market. 

  

                                                                 
6 For a stock- flow system in equilibrium, we can directly infer X = W M, where X, W, 

M respectively denote the size of the stock, time of each member’s stay in the stock, and 

turnover flow (the inflow that equals the outflow). To see this, consider a college with a 

turnover M of 1,000 students each year (that is, 1,000 students being admitted and 1,000 

students graduating each year). If each student spends four years in school, which is W, 

then the college has an equilibrium size X=1,000 × 4= 4,000 students. Garbriel and 

Nothaft (2001) apply this stock-flow relation as an identity to their study on the rental 

housing market. 
7 Blank and Winnick (1953) first claim, followed by Smith (1974), that there is a simple 

inverse relationship between housing vacancy rates and moves in housing prices or rents. 

Since the 1980s, there has been a surge of empirical works along this line, mainly 

applying regression analysis. See (among others) Rosen and Smith (1983), Wheaton and 

Torto (1988), and Jud and Few (1990) who confirm the relationship, and (among others) 

Eubank and Sirmans (1986) and Belsky and Goodman (1996) who raise doubts and 

criticisms. The empirical studies have advanced along pragmatic specifications of the 

regression equation, such as how the lagged variable should be used. See Wheaton (1990) 

for a review and their proposed improvements. As to whether the reference rate is 

stationary across cities and times or how the change in the rate should be explained, see 

Sivitanides (1997) for a review and his proposed improvements. 
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3.2 Defining and Computing Market Performance and Friction 

 

Housing vacancy rate has commonly been regarded as excess supply, thus 

implying market inefficiency, and the rate has often been considered as 

measuring market friction. The proposed model demonstrates that both the 

SOM and the observed vacancy are results of the market process, and therefore 

may not measure the market performance and friction correctly. The market 

performance can now be better defined and computed by using the ratio 
* */ / ( ) / ( )o o o oP p c r        in accordance with Equation (9a). Here, 

λ*is the inverse of the observed average marketing time W*. Market friction that 

measures market inefficiency can be defined and computed as the complement 

to this market performance: 
*1 / ( ) / ( )o op r c r     . The monetary loss 

to friction of an average house in the market is the difference between the 

market price and the effective price, or o oP   which is 
* *[( ) / ( )]c r r P  , and the total flow of monetary loss of the market is the 

product of this average house loss and ROT. 

 

Incidentally, this endogenously determined monetary loss to friction means that 

the loss cannot be regarded as an exogenous cost to be absorbed into the supply 

function. It in turn upholds one of the critiques in the Introduction, and 

therefore justifies a departure from the traditional model of a frictionless market 

with clearance in equilibrium.  

 

How substantial is this difference between the two prices in the end? It all 

depends on the carrying cost rate c and discount rate r. If both c = 0 and r = 0, 

then Π = P in Equation (9) and π = p in Equation (9a). Should this be the case, 

Equations (4), (5) and (6) will become the traditional market equilibrium model 

as a special case. 

 

The difference between the two prices is certainly an empirical matter. A 

numerical example with assumed plausible values of c, r, and λ can show that 

this difference may be substantial indeed, especially with regard to the behavior 

of the builders as suppliers in a housing market.8 As for the owner-occupiers 

who are involved in selling their original house and buying a new one, the 

variances of the three parameters should be even higher than those of the 

                                                                 
8 For example, if a developer has a subjective discount rate r = 0.1, and an annual 

carrying cost rate c = 0.1 (including the capital cost, maintenance and operation, 

advertising, and depreciation), an expected six months (λ=2) for selling his/her new units 

would result in π/p =0.90, or a loss of 10% of the sale price. By contrast, a selling time 

of one month (λ=12) would result in π/p = 0.98, or a loss of 2% of the price. The 

difference is larger than the average profit margin of most developers for projects even 

without considering the leverage of their equity investment, which may easily be five 

times or larger. It, therefore, must be the basis of the developer’s planning and marketing 

strategies. 
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builders. This means that the difference could be quite significant, at least for 

certain households. 

 

 

3.3 Estimating Speculative Holdings 

 

In many countries, there are only aggregated statistics of vacant houses V* 

without a breakdown according to reasons of vacancy. Now, after the SOM is 

computed from the observed ROT and TOM, we can then estimate the number 

of unavailable vacant houses on the market as Vo= V* SOM. This may be 

further broken down into Vo= V1+ V2+ V3, in which V1
 denotes the seasonal use, 

V2
 the transitional vacant houses (those already sold but waiting for new owners 

to move in), and V3
 the houses held off the market for speculative sales later. 

After assuming the portion of seasonal use and the portion of transitional 

vacancies, (both available in the U.S. census,) we can arrive at the amount of 

speculative holding V3, which should be significant information in market 

research. 

 

 

3.4 Hazard Rate Elasticities 

 

Without specifying and estimating the hazard function (7), we can still make 

use of the equation. Combining (7) and (8) results in ( , ) 0Z P Z G   . Totally 

differentiating this equation leads to 

/ (1/ / ) / (1/ ) / 0P Z P PdP P E E E dZ Z E dG G       , where PE
 and 

ZE  are hazard rate elasticities with respect to price and the SOM. As the 

TOM = 1/λ, the negatives of PE
 and ZE  are TOM elasticities with 

respect to price and the SOM. With a time series of observed percentage 

changes in price, the turnover rate, and the computed SOM, a regression model 

based on this equation can be applied to estimate the two elasticities, and the 

postulated directions can be tested. As behavioral parameters, the two 

elasticities are expected to be stable and useful, and their stability can be tested 

with various estimations from different housing markets. However, note that 

the time series data should be collected at the observed equilibrium state and 

that the estimation is based on changes in comparative statics, not on dynamic 

responses. 

 

 

4. Extensions 
4.1 Monopolistic Competition 

 
By substituting F for G due to the equality in Equation (6), Equation (8) can be 

written as /F Z  . The hazard rate can thus be viewed as the market demand 

shared by any one individual seller. A seller k of a house with a housing stock 
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hk for sale is selling a distinct good since the house is indivisible. Therefore, in 

face of the demand λ, s/he acts as a monopolistic competitor, and chooses the 

optimum reservation price Pk
+ that maximizes his/her effective price

( ) / ( )k k k k k kP C r     , which is extended from Equation (9) to an 

individual seller. Consequently, each seller has a different reservation price Pk
+ 

on the market. 

 

This price can be decomposed as ( )o o
k k k kP h p h p p    , where po is the 

equilibrium market unit price, and /k k kp P h   is the optimum unit stock 

price of the seller. The component hk po is due to the stock size of the house, 

and the component ( )o
k kh p p   is due to the deviation of the seller’s 

optimum price from the market price. Hence, the observed house price spread 

on the market stems from two different sources. These two components can be 

estimated empirically with hedonic price techniques if information on the 

attributes of each house is available. After the estimation, the ratio pk
+/ po can 

be computed.9 The ratio may be further explained by the seller’s discount rate 

rk and carrying cost ck in a regression investigation. 

 

The average of pk
+ of all sold houses may still differ from the equilibrium price 

po. This can be regarded as a source of adjustment in the market. 

 

 

4.2 Submarkets 

 

The model has been proposed for one community in which the heterogeneous 

houses are reduced to a homogeneous housing stock with one uniform unit price. 

To increase realism, the model can be extended to an urban housing market that 

consists of different communities, or submarkets, each of which is qualitatively 

so different in housing style and location that they do not necessarily share the 

same unit housing price. 

 

Submarkets may simply be treated separately. Each submarket is to be modeled 

by the same six equations, Equations (4) – (9), and the two determined prices 

are then used to solve Equations (1), (2), and (3) for the corresponding service 

equilibrium. Demand and supply in each submarket is independent of the 

demand and supply in other submarkets. However, to engage in a more 

interactive analysis, the model can be extended to cover household movements 

across submarkets and make all demand and supply interdependent. 

 

Let the submarkets be indexed by i or j. Consider the SOM pool for a submarket 

i, i oi i iF M A X   , where oiM  is the number of households moving into 

                                                                 
9 The sale price Pk can be regressed on the housing attribute set Xk to obtain an estimate 

of the hedonic price coefficient βˆ. If we interpret Xkβˆ as the hk po component and 

interpret the residual ek as the hk(pk
+– po) component, then pk

+/ po=1+ ek/ Xkβˆ. 
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submarket i from all other submarkets, Ai is the number of households formed 

in the submarket, and Xi is the number of houses demolished in the submarket. 

Moi, Ai, and Xi, are all functions of price pi. In the same pool, on the other hand, 

i io i iG M B Y    , where Mio is the number of households moving out from 

submarket i, Bi is the number of dissolved households in the submarket, and Yi 

is the number of new houses added to the submarket. Mio, Bi, and Yi, are all 

functions of price πi. Since oi jij
M M  and io ijj

M M , where Mij 

is the number of households moving from submarket i to submarket j and Mji is 

the number of households moving from submarket j to submarket i, all the 

submarkets interact with each other through household moves to create and 

deplete house sales in origins and destinations. The proposed model can 

therefore be extended to become a spatial price model. That the household 

movement drives urban dynamics and brings about community changes is a 

received theme among urban students, starting probably from Grigsby (1963). 

Here, the interactions among submarkets are formalized. 

 

 

4.3 Vacancy Transfer Chain 

 

When a household moves from one house to another or A to B, the act can be 

viewed as a housing vacancy transfer from B to A in the opposite direction. 

Once a vacancy is created in a submarket (as a member of G in Equation (5)), 

the ensuing transfers form a chain through the submarkets until it is terminated 

(as a member in F in Equation (4)). There is a body of literature that analyzes 

vacancy transfers by applying the Markov chain model with a focus on the 

chain length as vacancy multiplier, see Hua (1989) and Emmi and Magnusson 

(1997). The model predicts discrete events embedded in a Markovian process 

without time dimension. The model proposed in this paper just may compensate 

the Markov chain model by providing the TOM as the vacancy’s duration of 

stay in each submarket and, furthermore, offer market meaning to the 

submarket interaction of the transfers. 

 

In short, the structural model can be integrated with an accounting system of 

household moves and vacancy transfers to form a spatially interactive system. 

 

 

4.4 Impact Analysis and Simulation 

 

Standard comparative static analysis can be applied to the service equilibrium 

in Equations (1) – (3) to study the exogenous impacts after the demand and 

supply functions have been estimated together with the price solutions from the 

SOM sub-model. However, the tool would be difficult to work with in the SOM 

sub-model as we need to deal with six equations; i.e., Equations (4) – (9). A 

simulation method may then be the option, perhaps in the form of partial 
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comparative statics that involve the use of parameters which are separately 

estimated or assumed.  

 

A computable general equilibrium method may be applicable for studying a 

more comprehensive multi-submarket system. To implement this, a large data 

base, perhaps at the scale of a metropolitan region, should be established. This 

would be costly but worthwhile for the potential utilities. 

 

In order to increase realism, other factors, including the interest rate, business 

cycle, etc. could be incorporated into the simulation or the computable general 

equilibrium analysis. All dynamics in a housing market can be extended from 

the static equilibrium framework proposed in this paper with ad hoc 

specifications of the adjustment process. 

 

 

4.5 Other Real Estate and Durable Good Markets 

 

Section 2.3 addresses the behaviors of the agents in a market of house sales. 

The model should be applicable to the rental housing market as well. Potential 

tenants come to an apartment for rent independently in a Poisson process. They 

first inspect and then decide whether the apartment is worth the asked rent, 

based on their perceived value of the property. This process is sufficient to 

generate the SOM. Each landlord makes a trade-off between the desire for a 

higher monthly rent and a longer TOM. The situation is similar to that of a 

house sale. The landlord’s calculation of his/her optimal rent is slightly 

different from that based on Equation (9). However, as s/he will receive a rental 

flow rather than a lump sum of proceeds from a house sale, the tenancy length 

of the contract and the expected vacancy length between tenants should be 

included in the calculation. An adjustment of the model is needed, but this 

should not be difficult. Other non-housing real estate, such as offices and 

commercial property, should follow either the sales market model or the rental 

housing model adjustment. 

 

Other resalable durable goods, such as land, used cars, jewelry, furniture, etc., 

which share certain basic properties of houses (namely, dispersed ownership of 

indivisible heterogeneous goods), should share the same market features 

portrayed in this paper: the TOM is long, buyers have less information than 

sellers and must approach sellers to inspect the goods, and sellers control the 

probability of a successful transaction by setting their reservation prices. The 

general equilibrium model presented in this paper may require modification to 

adapt to other specific market features for each durable good, but the basic 

market structural framework should remain the same. 
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4.6 A Behavioral Approach to Housing Bubble 

 

The proposed model assumes that each and all agents in the market act 

independently and rationally. The assumption may not hold when they face an 

unusual situation that leads to the boom and bust of a housing market bubble. 

There is a long list of these new behavioral approaches to housing market 

bubbles. They can be explored as an extension to enrich housing market 

research.  

 

 

5. Recapitulation and Conclusions  

 
To model the complex housing market, two schemes have been adopted 

together in order to drastically simplify matters. One is to treat a physical house 

as packed with single-dimensioned housing stocks that yield homogeneous 

housing services. The other is to summarize the diverse household situations 

and their idiosyncratic tastes simply with their different willingness-to-pay for 

a house. Based on the two schemes, a rather general structural model has been 

built with nine equations that may capture the essential aspects of the housing 

market. 

 

In the model, two equilibriums are connected: one for the housing services and 

the other for houses as tradable goods on the market. Each equilibrium is 

maintained by two prices: one for the demand and the other for the supply. It is 

a competitive market in which a multitude of buyers and sellers who are all 

price takers participate, but a stochastic process stems from the house search by 

individual households. The parameter of the process is endogenously 

determined and the process creates the SOM, TOM for selling houses, and the 

ROT. 

 

Conclusions: First, in order to analyze the housing market fruitfully, the two 

basic tenets in microeconomics: a single price to equate supply with demand 

and the equilibrium clears the market, should be abandoned. Secondly, the 

housing market friction can be clearly defined and precisely measured, as 

presented in this paper. Finally, the structured model can generate many useful 

applications for housing market research without the specification and 

estimation of many functions in the model, and the merits may be judicially 

extended to many other markets. 
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Appendix 

 
All buyers and sellers are price takers with regard to p and π respectively. 

However, while a seller k knows the stock hk contained in his/her house for sale, 

the buyer has to come to inspect the house in order to ascertain the housing 

stock. 

 

Let a representative seller of a house with an average stock h be examined. S/he 

knows the prevailing housing unit price p and takes P = hp as his/her 

willingness-to- accept (reservation) price for the house, from which s/he marks 

up to become his/her advertised (listing) house price.10 A searcher-buyer, in 

reference to the same housing price p, searches for a house that contains stock 

h+ as his/her desired optimal asset. However, s/he may not find it on the market, 

as each house is indivisible and we do not assume that houses in the market 

have a housing stock continuum. After narrowing down his/her targets in 

accordance with the advertised prices on the market, s/he will choose to contact 

a seller and go to inspect the house in order to ascertain the housing stock. 

Considering his/her optimal housing stock and its associated cost together with 

an expected additional cost if s/he continues to search, s/he will work out an 

amount of willingness-to-pay (bid) P^
 for this house that would achieve the 

same level of utility obtainable from a house that contains h+ with payment ph+. 

If P^≧ P, a deal is struck. From the seller’s point of view, the searchers come 

to his/her house independently; hence, the house sale follows a Poisson process 

with a single parameter, λ, i.e. the hazard rate. Before continuing, we first need 

to look into this hazard rate to examine its features. The searches are generated 

from inside as well as outside the community. The generation rate, q per time 

period, can be reasonably postulated as a function q of both the aggregate 

housing service demand D and the availability of houses on the market 

measured by Z: q = q(D, Z), which, owing to  D = d(p), can be simplified as 

q= q (p, Z), and where / 0q p    (since / 0q D   , ' 0d  ), and 

/ 0q Z   . The representative seller shares the total searchers with other 

                                                                 
10 The assumption of a seller being a price-taker is relaxed later in Section 4.1. to allow 

him/her to be a monopolistic competitor in order to determine his/her own optimum 

house price Pk
+. 
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sellers and hence faces a contact frequency ( , ) / ( , )q p Z Z p Z   , in 

which / 0p    (since / 0q    and / 0q p    ) and / 0Z    

(as it is assumed that the elasticity of q with respect to Z is less than one). Each 

searcher offers a bid P^ after inspecting the house, as mentioned. Given 

whatever is the distribution density of P^ over all the searchers that come to the 

house, the probability δ of a successful deal after contact is made depends on 

the cumulative probability function δ at the seller’s reservation price P: δ=δ(P). 

Multiplying this probability by the contact frequency yields the hazard rate 

( , ) ( )p Z P   . This can be simplified as: 

( , )P Z                          (7) 

where / 0P    and / 0Z   , resultant of the derivative directions as 

stated above. This describes a special market operation. It is a competitive 

market, yet, due to the indivisibility of the goods, a stochastic process of 

searching and matching occurs. 

 

Specifically, it is a Poisson process governed by a hazard rate. The main thrust 

is that this rate is an endogenous variable represented by Equation (7). 


